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Extreme fluctuations in small-world networks with relaxational dynamics
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We study the distribution and scaling of the extreme height fluctuations for Edwards-Wilkinson-type relax-
ation on small-world substrates. When random links are added to a one-dimensional lattice, the average size of
the fluctuations becomes finiisynchronized stajeand the extreme height diverges only logarithmically in the
large system-size limit. This latter property ensures synchronization in a practical sense in small-world coupled
multi-component autonomous systems. The statistics of the extreme heights is governed by the Fisher-Tippett-
Gumbel distribution.
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Synchronization is a fundamental problem in natural andhrough the dominating collective long-wavelength modes,
artificial coupled multi-component systerfil§. Since the in- and the extremal and the average fluctuations follow the
troduction of small-worldSW) networks[2] it has been well same power-law divergence with the system di£6,17.
established that such networks can facilitate autonomouRelationship between extremal statistics and universal fluc-
synchronization1]. Examples include noisy coupled phase tuations in correlated systems has been studied intensively
oscillators[3] and scalable parallel simulators for asynchro-[16,22—-29. Here we discuss to what extent SW couplings
nous dynamicg4]. In essence, the SW coupling introduces (extending the original dynamics through the random ljnks
an effective relaxation to the mean of the respective IOcafead to the suppression of the extreme fluctuations. We illus-
field variablegor local “load"), and inducegstrict or anoma-  rate our findings on an actual synchronization problem for
lous) mean-field-like behaviof5,6]. In addition to the aver- g-5iaple PDES schemgd.
age load in the network, knowing the typical size and the Fjrst we briefly summarize the basic properties of the
distribution of the extreme fluctuatioig—9 is of great im-  gyremal values ofN independent stochastic variables
portance from a system-design viewpoint, since failures angz_g 2830 Here we consider the case when the individual
d_elays are triggered by extreme events occurring on an iNsomplementary cumulative distributid®. (x) (the probabil-
vidual node. _ _ ity that the individual stochastic variable is greater than

Structural and scaling properties of SW networks havedecays faster than any power law, ie., exhibits an
been investigated intensivel}2,10-14. In this paper, we  gynonential-like tail in the asymptotic largelimit. (Note
focus on the steady-state properties of the extreme fluctugpat in this case the corresponding probability density func-

tions in SW-coupled interacting systems with relaxationalijsn gisplays the same exponential-like asymptotic tail be-
dynamics. In contrast, consider, for example, kinetically

growing possibly non-equilibrium surfaces with only short- ) . C L
range interactionge.g., nearest neighbors on a latjicdere ‘gﬂf{e Cf 'Stﬁ <|:onstatnt. f-{r?ee\ln the tct:rTulatlvbe bc.ill_\:,trltt;]ut;on
a suitably chosen local field variable is the local height fluc-, < X) or the largest o events(the proba ity tha
tuation measured from the mefts]. It was showr[16] that the maximum value is less tha®) can be approximated as
in the steady state, where the surface is rough, the extrenté:30
height fluctuations diverge in the same power-law fashion
with the system size as the average height fluctuatitives PT(x) = [P_(x)N=[1-P_(x)]N = e NP-(, (1)
width). Similar observation was mad&7] in the context of
the scalability of parallel discrete-event simulatigPDES . ) o
[18-20, where the progress of the simulation is governed by/vhere one typically assumes that the dominant contribution
the Kardar-Parisi-ZhanKPZ) equation[21]: here the “rela- O the statistics of the extremes comes from the tail of the
tive height” or local field variable is the deviation of the individual distributionP..(x). With the exponential-like tail
progress of the individual processor from the average rate d the individual distribution, this yields
progress of the simulatiof20]. The systems in the above
examples are “critical” in that the lateral correlation length of o)

. . . ma ~ o €
the corresponding rough surfaces scales with the system size PI¥(x) =€ : (2
[15]. For systems at criticality with unbounded local vari-

ables, the extreme values of the local fluctuations emergg¢he extreme-value limit theorem states that there exists a
sequence of scaled variables (x—ay)/by, such that in the
limit of N— o, the extreme-value probability distribution for

*Electronic address: gucluh@rpi.edu X asymptotically approaches the Fisher-Tippett-Gumbel
"Electronic address: korniss@rpi.edu (FTG) distribution[7,8]:

. : 0
havior) We will assumeP.(x)=e " for large x values,
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PIaR) ~ e, 3)

with mean(X)=1vy (y=0.577... being the Euler constaaind
varianceoz=(X%) - (X)?=72/6. From Eq.(2), one can deduce
that to leading order the scaling coefficients must de
=[In(N)/c]? andby=(5c) ™ In(N)/c]¥9-1[30,31. The av-
erage value of the largest of tiNeoriginal variables, to lead-
ing order, then scales as

<Xmax> =ay+byy= [ln(N)/C]llﬁ- (4)

We now consider the Edwards-WikinsqiEW) model
[32], a prototypical synchronization problem with relax-
ational dynamicg4,6,2Q, first on a regular one-dimensional
lattice: gy =—-%; T'jh;+ 7(t). Hereh is the local heightor
load) at sitei, —Ffj?:aij+l+ dj-1—28; is the discrete Laplac-
ian on the lattice, andy(t) is a short-tailed noise (e.g.,

Gaussial delta-correlated in space and time. The width,

borrowing the framework from non-equilibrium surface-
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Thus, the correlation length beconf@ste for an arbitrarily
small but nonzero density of random linksoft network, or
for an arbitrarily small but nonzero strength of the random
links (one such link per site, hard netwgrk

This is the fundamental effect of extending the original
dynamics to a SW network: it decouples the fluctuations of
the originally correlated system. Then, the extreme-value
limit theorems can be applied using the number of indepen-
dent blocksN/¢ in the system9,16,29,30. Further, if the
tail of the noise distribution decays in an exponential-like
fashion, the individual relative height distribution will also
do so[34], and depends on the combinatidy/w, where
Aij=h;—h is the relative height measured from the mean at
site i, and w= \W Considering, e.g., the fluctuations
above the mean for the individual sites, we will then have
P_(A) =exd-c(A;/w)°], where P-(A;) denotes the
“disorder-averaged’(averaged over network realizations
single-site relative height distribution, which becomes inde-

growth phenomena, provides a sensitive measure for the apendent of the site for SW networks. From the above it

erage degree of synchronization in coupled multi-compone

rfpllows that the cumulative distribution for the extreme-

systems/4,20]. The EW model on a one-dimensional lattice height fluctuations relative to the meakya,=hmaxh, if
with N sites has a “rough” surface profile in the steady statescaled appropriately, will be given by E3) [35] in the

(de-synchronized state where the average widtw?),
E<(1/N)Ei’\‘=1(hi—h)2) diverges in the thermodynamic limit
as(w? ~N. (Here,h=(1/N)=L,h; is the mean heightThe

diverging width is related to an underlying diverging length
scale, the lateral correlation length, which reaches the system
sizeN for a finite system. Further, the maximum height fluc-

tuations(measured from the mean height diverge in the
same fashion as the width itself, i.e{(hpa—h)?~N
[16,17.

asymptotic largeN limit (such thatN/&>1). Further, from
Eqg. (4), the average maximum relative height, to leading
order, will scale as

In(N/¢)
B (5

1/6 w
(Amay = W( ) = @[In(N)]llé-
(Note, that bothw and ¢ approach theiffinite asymptotic
values in the larg&N limit for SW-coupled systemgsAlso,
the same logarithmic scaling witN holds for the largest

Here we ask how the scaling behavior of the extremarelative deviations below the mea(rtn_—hmm) and for the

height fluctuations changes if wextend the same dynamics

maximum spreadh,.x—hmin)- This is the central point of our

to a SW networK2]. Then the equation of motion becomes paper: in SW-synchronized systems with unbounded local

athi:_Ej(Fi(}+Vij)hj+7]i(t)! where -Vi]-:Jij—b‘ijZ J” is the

variables driven by exponential-like noise distributi@uch

Laplacian on the random part of the network. The symmetricas Gaussiap the extremal fluctuations increase orbga-

matrix Jj; represents thguenchedandom links on top of the
regular lattice, i.e., itis 1 if sité andj are connected and 0

rithmically with the number of nodes. This weak divergence,
which one can regard as marginal, ensures synchronization

otherwise. In a frequently studied version of the SW networkfor practical purposes in coupled multi-component systems.

[10-12,33 random links of unit strength are added to all

possible pair of sites with probabilitg/N (“soft” network

Next we illustrate our arguments on a SW-synchronized
system, the scalable parallel discrete-event simulator for

[6]). Here p becomes the average number of random linksasynchronous dynamic§4]. Consider an arbitrary one-
per site. In a somewhat different construction of the networkdimensional system with nearest-neighbor interactions, in
(“hard” network[4,6]), each site has exactly one random link which the discrete eventsipdate attempts in the local con-
(i.e., pairs of sites are selected at random, and once they afiguration exhibit Poisson asynchrony. In the one site per

linked, they cannot be selected agaamd the strength of the
interaction through the random link s Note that both SW

processing elemerPE) scenario, each PE has its own local
simulated time, constituting the virtual time horizfm(t)}L,

constructions have a finite average degree for each node, aggssentially, the progress of the individual nodéseret is
are embedded in a finite dimension. The common feature ahe discrete number of parallel steps executed by all PEs,
the EW model in both SW versions is an effective nonzeroyhich is proportional to the wall-clock time and is the

mass %(p) (in a field theory senge generated by the
quenched-random structuf@]. In turn, both the correlation
length é=[3(p)]™Y2 and the width(w?)=(1/2)[3(p)] 12

approach a finite valugynchronized stajeand become self-
averaging in theN—o limit. For example, for the EW

number of PEs. According to the basic conservative synchro-
nization schem¢19], at each parallel step only those PEs
for which the local simulated time is not greater then the
local simulated times of their virtual neighbors, can incre-
ment their local time by an exponentially distributed random

model on the soft and hard SW versions in one dimensionamount.(Without loss of generality we assume that the mean

for small p values,3(p) ~ p? and = (p) ~ p, respectively[6].

of the local time increment is one in simulated time umits.
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Thus, denoting the virtual neighborhood of PEby S, if — 10° — 10°
hi(t) <min; s {h;(t)}, PEi can update the configuration of the  |® £ PO D g PO
underlying site it carries and determine the time of the next| } 10 10
event. Otherwise, it idles. Despite its simplicity, this rule 102 102
preserves unaltered the asynchronous causal dynamics of tt

underlying systeniil9,20. In the original algorithnj19], the 107 10°
virtual communication topology between PEs mimics the in-

teraction topology of the underlying system. For example, 10 10*
for a one-dimensional system with nearest-neighbor interac:

tions, the virtual neighborhood of AES, consists of the left 10° 107
and right neighbor, PE-1 and PE +1. It was showr{20] - -

that then the virtual time horizon exhibits KPZ-like kinetic .4 2 0 2 4 6 & 10 -4 2 0 2 4 & 8 10
roughening and the steady-state behavior in one dimension i y=(Ana = <Aua>)(0, V=B = <Brie>V,
governed by the EW Hamiltonian. Thus, the average width
of the virtual time horizor{the spread in the progress of the  FIG. 1. Disorder-averaged probability densities for the scaled
individual PE$ diverges wherN— o [20], hindering effi-  (zero mean and unit variancextreme-height fluctuations for the
cient data collection in the measurement phase of the simBW-synchronized PDES time horizor(®) For the hard SW net-
lation [17]. To achieve a near-uniform progress of the PEswork with p=0.10 andb) for the soft SW network witlp=0.50, on
without employing frequent global synchronizations, it waslog-normal scales for three system sizes. The solid curve corre-
shown[4] that including randomly chosen P& addition  sponds to the similarly scaled FTG dengi85] for comparison.
to the nearest neighbgri the virtual neighborhood results
in a finite averagewidth. Here we demonstrate that SW syn- follow the same scaling with the system siteNote, that for
chronization in the above PDES scheme results in logarithyr specific systeniPDES time horizoy the “microscopic”
mically increasing extreme fluctuations in the simulated timedynamics is inherently non-linear, but the effects of the non-
horizon, governed by the FTG distribution. linearities only give rise to a renormalized m&g) (leav-

In one |mplementat|on of thg abovg_scheme, each PE hqﬁg 3(p)>0 for all p>0) [4,36]. Thus, the dynamics is ef-
eXaC“y one random ne!ghbc(m gddltlon to the nearest fectively governed by relaxation in a small world, yielding a
neighborg and the local simulated time of the random nelgh'finite correlation length and, consequently, the slow logarith-

E'PerplsT(r:]Zeglgreris%r:)lz d\?::;h C%rﬁqk;?:rgl;gtfgne:ee&;mgl?rt]'gr;]ar ic increase of the extreme fluctuations with the system size
version of the SW network, as described earlier, and thgéq' (5)]: Also, for the PDES time horizon, the local height

. ) . istribution is asymmetric with respect to the mean, but the
“strength” of the random links is controlled by the relative y P

f f the basi hronizational st th haverage size of the height fluctuations is, of course, finite for
requencyp ot the basic synchronizational Steps throughy, i, ahove and below the mean. This specific characteristic
those links. In an alternative implementation, the communi

cation topology is the soft version the SW netwarkith p simply yields different prefactors for the extreme fluctuations

. [Eg. (5)] above and below the mean, leaving the logarithmic
average number of random links per)PEnd the random ﬁcaling withN unchanged.

neighbors are c_hecked at every simplation step together_wit In summary, we considered the extreme-height fluctua-
the nearest r_mghbor;. Note that in b.Oth mplemenpaﬂonaons in a prototypical model with local relaxation, un-
(where the virtual neighborhooB now includes possible bounded local variables, and short-tailed noise. We argued,

random neighbds) for each sitd), the extra checking of the ; . . -
simulated time of the random neighbor is not needed for th(ghalt when the interaction topology is extended to include

faithfulness of the simulation. It is merely introduced to con-

becomesself-averagingi.e., independent of the network re-
alization. Finally, Fig. 2 shows that for sufficiently larde

(such thatw essen_tlally _becomes system-S|ze_ independent FIG. 2. Average maximum relative height and average width for
the avgrage(or typllcab.5|ze of the e_‘Xtreme'he'ght _ﬂUCtua' the SW-synchronized time horizon as a function of the number of
tions divergelogarithmically, according to Eq(S) with & nogesPES. Solid symbols: hard SW network wifa=0.10. Open
=1. We also found that the largest relative deviations belowympols: soft SW network withp=0.50. Note the normal-log

the mean(ﬁ—hmm% and the maximum sprea@.,—hminy  scales.

trol the width of the time horizof4]. 14 Fa——a <AL

To study the extreme fluctuations of the SW-synchronized 10 Lw——a W B {fg;
virtual time-horizon, we “simulated the simulations”, i.e., the re—n <A > */;j/f/"*
evolution of the local simulated times based on the above 10 - maxT a e 1
exact algorithmic rules. By constructing histograms Agr g | TF W/*/;;/f
we observed that the tail of the disorder-averaged individual o
relative-height distribution decays exponentially for both SW 6 /;Z/E
constructions. Then, we constructed histograms for the k- 2
scaled extreme-height fluctuations. The results, together with 47 1
the similarly scaled FTG densityd5], are shown in Fig. 1. O A& - SRR
We also observed that the distribution of the extreme values O’E*"E'"Eh#_%"&_&_ﬂ_ "

1
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random links in a SW fashion, the statistics of the extremedhen, the largest fluctuations can still diverge as a power law
is governed by the FTG distribution. This finding directly with the system sizégoverned by the Fréchet distribution
addresses synchronizability in generic SW-coupled system8,9]), motivating further research for the properties of ex-
where relaxation through the links is the relevant node-totreme fluctuations in complex network36].

node process and effectively governs the dynamics. We illus-

trated our results on an actual synchronizational problem in We thank Z. Racz, Z. Toroczkai, M.A. Novotny, and A.
the context of scalable parallel simulations. Analogous quesMiddleton for comments and discussions. G.K. thanks CNLS
tions for heavy-tailed noise distribution and different types ofLANL for their hospitality during Summer 2003. Supported
networks have relevance to various transport and transmisy NSF Grant No. DMR-0113049 and the Research Corp.
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